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A generalized mixed Lagrangian-Eulerian computing technique for incompressible 
fluid flows is presented. The present method combines the advantages of two existing 
techniques such that conservation of both linear and angular momentums is insured. 
New features include a damping formula, which effectively prevents the occurrence 
of alternating errors, and the formulation of discretized boundary conditions for a 
sharp fluid-fluid interface. Several examples are given to demonstrate the usefulness of 
the present method. 

I. INTRODUCTION 

Lagrangian or mixed Lagrangian-Eulerian computing techniques have been 
used by several authors in treating time-dependent incompressible flow problems 
in which free surface and/or material interfaces are present. The ALE (Arbitrary 
Lagrangian-Eulerian) method, as used by Hirt [l] for example, provides a tool for 
the study of fairly complex flow configurations where pure Eulerian or Lagrangian 
methods cannot be applied. Each cycle of the ALE method consists of two phases: 
In phase 1, the calculation is purely Lagrangian, similar to the treatment in the 
LINC [2] method. In phase 2, a rezone procedure is used so that a desirable mesh 
configuration can be maintained. The phase 1 calculation is based on a finite- 
difference representation of a set of conservation equations written in integral 
form. As in many other incompressible computing techniques, a simultaneous 
solution of the discretized pressure field is required to permit the stepwise integra- 
tion of the flow field with respect to time. 

Brennen and Whitney [3], on the other hand, presented a pure Lagrangian 
scheme in which explicit use of the pressure is avoided by describing the fluid 
dynamics in terms of transport equations for the velocity circulation. At a given 
instant of time, a relaxation technique is used to solve the velocity field so that a 
negligibly small velocity divergence and the correct amount of circulation are 
obtained for each computing cell. 

There are both similarities and differences between phase 1 of the ALE method 
and the method of Brennen and Whitney, which shall be referred to as the BW 
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method hereafter. For example, it can be shown that the iterative solution of the 
velocity field in the BW method is somewhat similar to a simultaneous relaxation 
of pressure and the velocity components in the ALE method. However, we have 
found the relaxation procedure in ALE to be more efficient than that in the BW 
method whenever the finite-difference mesh contains cells of various sizes and 
aspect ratios. On the other hand, to our knowledge, no finite-difference approxima- 
tions for the resultant pressure force JS pn dS have been derived such that 0 x Vp = 0 
is rigorously satisfied in the ALE framework. Consequently, there is no guarantee 
that an irrotational fluid motion will remain irrotational in the absence of vorticity 
production. An example in which the velocity circulation grows unboundedly is 
described in Section 3.1. This difficulty is circumvented in the BW method by 
obtaining,‘for any time step, the correct velocity circulation for each cell and then 
solve the velocity field to satisfy the correct circulation and zero divergence. In 
addition, the way various boundary conditions are formulated in the BW method 
eliminates the ambiguity in choosing a satisfactory integration path for JS pn dS at 
mesh points that lie on the boundaries of the fluid domain. On the other hand, the 
advantage of keeping track of the pressure field is two-fold: (1) It can be used to 
“predict” the velocity field for the next time step, thus speeding up the subsequent 
relaxation procedure; and (2) for some types of problems the pressure field is part 
of the solution being sought. 

This paper describes a generalized arbitrary Lagrangian-Eulerian (GALE) 
method which has evolved from the two methods mentioned above and represents 
an improvement over its predecessors in several respects. In what follows we show 
how the desirable features of these methods are combined to advantage. A gene- 
ralization of the BW method allows velocity circulation to be generated by density 
variations and/or by tangential stresses. Furthermore, a procedure has been 
developed which treats an inviscid (free-slip) material interface. This method can 
handle any density ratio or discontinuous tangential velocity with the correct 
stress conditions coupling the two separate fluid regions. 

A numerical instability which has been found in the LINC, ALE and BW 
methods is the “alternating error,” a growing nonphysical disturbance whose 
wavelength is equal to two finite-difference mesh spacings. Previous attempts 
[4, 51 to introduce artificial damping produced excessive damping of the solution 
to some types of problems. In this paper an effective alternative procedure is 
described, which yields negligible amount of nonphysical damping. 

II. THE GALE METHOD 

In the following subsections we first discuss the basic procedure of the GALE 
technique and then treat separately in more detail several important aspects. We 
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limit our present discussion to 2-dimensional problems in plane, Cartesian coor- 
dinates. 

2.1. Basic Computational Procedure 

To implement a finite-difference representation of the flow, the fluid domain is 
divided into a number of quadrilaterals or cells (Fig. 1) in such a way that physical 
boundaries such as the interface between two fluids, the boundary between a fluid 
and a rigid body, free surfaces, etc., coincide with the cell boundaries. The vertices 
of these cells are designated by the (i,j) s&ix system (Fig. 2); and associated with 
each vertex are its spatial coordinates (x~,~ , yi,J, velocity components (u~,~ , vi,) 
and density pisj . A special arrangement is needed when an interface of discon- 
tinuity is present. In this case, each fluid is regarded as a separate region and the 
interface can be represented by two lines, each belonging to the fluid adjacent to it. 
At corresponding boundary points, such as Fl and F, in Fig. 1, boundary conditions 
to be described later must be satisfied. 

Y 
I b Free Surface 

FIG. 1. General mesh set-up. 

FIG. 2. A typical cell and sul%x system. 

581/v/3-6 
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A set of initial conditions on (x, y), (u, v) and p at each vertex is needed to begin 
a calculation. Then the vertices are moved to their new positions according to their 
instantaneous velocities through an increment in time St: 

where the superscript 12 refers to the nth increment in the time. Note that in Eq. (1) 
the advanced-time velocities u::“. and uEzl are needed, so that a set of cell equations 
of motion and appropriate boundary conditions can be imposed. 

One of the two governing equations for each typical cell as shown in Fig. 2 
requires that the volume, or the area in 2-dimensional problems, p of the cell 
remain unchanged as the calculation proceeds from the nth step to the (n + 1)th 
step. Since in the model the cell vertices are connected with straight lines, 

~~+1,2.j+112 = 6(xX* - &Y3 (2) 

In most of this paper, the subscripts 1, 2, 3, and 4 are abbreviations for the vertices 
of the cell (i + 4, j + 8) (Fig. 2), and the shorthand notations xl”3 E xln - x,“, 
X & = x2 n- xqn, etc., are used. The time rate of change in 7, by using Eqs. (1) and 
(2), can be expressed as 

4m~~z,j+1/2 - E+m+1/2 )Pt = [mr + $4) + Y;‘l(u;F + 42 

- x&($Jl + 431 - &3(4F + f&)1 
+ (w2)[(4p + 4x~;~ + $4) 
- @2”,” + 4X4;’ + 421 = R, , (3) 

where RI = 0 is the required incompressibility condition. 
The second cell equation concerns the rotation of the cell. Let Y = f u * ds 

represent the velocity circulation around the boundary of a cell. Assuming linear 
variation of the velocity components along the line segment between two vertices, 
we have 

G.1,2.i+1,2 = H4x4 - Gx3 + ~~33yEl - 4xd* (4) 

For inviscid homogeneous fluid flows, r&:;2,j+1,2 = r&,2,i+1,2, and Eqs. (1) and 
(4) lead to 
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where R, = 0 is the required circulation condition. For flows in which the density 
varies or the shear stresses are present, Eq. (5) must be generalized as described in 
Section 2.2. 

The various boundary conditions, to be described in Section 2.3, and the cell 
equations (3) and (5) form a system of nonlinear algebraic equations with (ut:‘, 
UT,?) as the unknowns, which may be solved by employing a successive over- 
relaxation procedure. To begin the iteration, the previous-timestep values (z& , 
z$) are used as a first approximation for ($7, u:,:‘). After finding @+I and ZP+~ 
for all the vertices, Eq. (1) is used to advance each vertex to its new position in the 
(x, y) space. The process of solving for (U n+l, @i-l) and moving the vertices can be 
repeated to obtain the development of flow. 

The procedure outlined above employs the Lagrangian description of fluid 
motion. Its chief advantage lies in that material interfaces are properly maintained 
and the lack of numerical instability associated with convection terms. Its dis- 
advantage, however, is that the cells can be badly distorted or even inverted in 
highly strained motions. To remove this difficulty, an automatic rezoning procedure 
can be employed. The principle behind the rezoning technique is to adjust the 
position of vertices at the end of each time increment, so that a nearly optimum 
shape is always maintained for each cell. In making such adjustment, due consider- 
ation is given to the amount of flux which results from moving the mesh lines 
relative to the fluid. In the GALE method, use is made of a rezoning procedure 
which is operationally easier than the one given in [l]. The details of this technique 
are covered in Section 2.5. 

2.2. The Generalized Second Cell Equation 

For irrotational flows we simply specify l7.F = 0 for each cell in the basic 
procedure described above. In general, however, nonzero rz;l, can be produced 
by density variations or by shear stresses. To derive systematically an equation for 
computing the time rate of change of r, one could in principle obtain a differential 
expression for dF/dt, and then use finite-difference approximations. However, for 
internal consistency, we may generalize Eq. (5) using finite-difference expressions 
from the beginning. 

Let (a, b) be a Lagrangian coordinate system, with the coordinate lines 
coinciding with the curvilinear finite-difference mesh lines (Fig. 1). We assume that 
the mesh is always set up so that the mapping from the (x, y) plane to the (a, b) 
plane and vice versa are nonsingular. Furthermore, we require that this mapping 
transforms every computational cell in the (x, y) plane into a unit square in the 
(a, b) plane. Note that a and b are continuous variables according to the definition 
above, but in the finite-difference framework quantities like x~,~, Y~,~, u~,~ and vCsi 
are defined only for integer values, a = i and b = j. 
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The momentum equations can be written as [3] 

where p is the density; g, and g, are the x-and y-components of gravity, respectively; 
q~ is the isotropic part of the normal stress; .$ and 77 are defined by 

t = @~mlW + PZyPY). 

7 = (all/&> + (~~YYPY). 
(7) 

The deviatoric stress tensor components Q-#@, Tag, and 7yy have the usual 
meanings [6]. 

Applying the first of Eqs. (6) to the vertices 1 and 2, as shown in Fig. 2, we obtain 
the finite-difference equation 

7%+1/z 
7% 

_ g1i2 = ; 
II 

9k+1 
g+1/2 + p/2 

+ 6% + P2)& - Pl ( u1 6; uln ) 

- p2 ( ur+18; U2n )] * [(xln - x2”) + (xl”” - x2”‘l)] 

+ ; [$+1/2 + 4+1/2 
+ 01 + P2)&/ - P1(uT+la; ";) 

( 

nil 
02 - v2 

R 

- p2 at )I * [(VI” - ~2") + (ul”” - Y;+~)I. (8) 

Similar expressions can also be obtained for Tc$+~‘~ - q.$+l12, &+1f2 - CJJ~+~‘, and 
qpf2 - p1 n+1’2. Eliminating the four ~I’S among the four equations thus obtained, 
and using Eq. (l), we get 

IPlM”’ - Ul”) - p9(u;+1 - u,“)] xy 

- [p2(u;+l - 242”) - p‘&:+l - Uqn)] x;y 

+ [pl(v;” - vln) - ps(v,n+1 - Yan)] y,y 

- ~2(V;+1 - v2”) - p&:+l - v4y)1 y;y 

- wgzh2xZnq+1’2 - P24c+1’2) + &/b,,Y,“,+1’2 - P2‘d;Y?l 

_ &[(;$1/2,;~-1/2 _ 5;;1/2x;3+1/2 + 171ns+1/2y;“,f1/2 _ 1;7/2y;;1/2] = R2 , (9) 
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where 
n-!-112 

x24 = $4 + @t/4)b42nqf1 + $41, 

n+112 
x13 = x:3 + @t/4M7 + $3);>, 

and similarly for y&+1/2 and yFzl/‘. Also, p13 = p1 - p3 , .$‘$*l’ = (~+“” - ft+1/2 
and similarly for pz4 and [;z”,“‘“. This is the fundamental equation in the present 
method. On the left-hand side the terms in the fifth pair of brackets are productions 
due to gravity and inhomogeneity of the fluid, and terms in the sixth pair of 
brackets represent the contributions from shear stresses. The gravity contributions 
have also been derived by Brennen and Whitney [3] in an integral form. 

It can be easily shown that when p = constant and < = 17 = 0, Eq. (9) reduces 
to Eq. (5). The quantities P+lj2 and 71 n+1/2 are evaluated at the vertices of the 
mesh. For most applications, except for creeping flows where implicitness is 
desired to increase at, using E” and 7” instead of the more complicated p+lj2 and 
qn+1/2 is quite adequate. A method of computing 5 and 17 is found in the Appendix. 

2.3. Boundary Conditions 

The conditions at a free surface and at a rigid boundary are the same as in 
[3]. We simply remark that these boundary conditions can all be cast in the general 
form 

AzP+~ + Bv”+l + C = R3, (10) 

where zP+l and zP+l are the velocity components to be determined at the boundary 
point under consideration, and R3 = 0 when correct values of u”+l and vn+l are 
used. 

In addition, we describe here a method to treat an inviscid (free-slip) material 
interface, which occurs in the formulation of many multilayer flow problems. Due 
to a discontinuity in tangential velocity at the interface, the (u, v) values are in 
general discontinuous there. Let (ul , vl) be the velocity components associated 
with the vertex & and (u2 , v2) be those associated with F2 in Fig. 1. Also, let p1 and 
p2 be the densities of the upper and the lower fluids, respectively. Then applying 
the first of Eqs. (6) without the shear-stress terms, we obtain 

( du, ---&!)$+(J$- 
dt 

for the upper fluid, and 

( duz --&)g+(+- dt 

(11) 

(12) 

for the lower fluid. In the above equations, a is a Lagrangian coordinate line 
conforming to the interface (Fig. 1); ax/as and ay/aa are evaluated at the interface. 
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Since the dynamics require the normal stress to be continuous at the interface, 
namely y1 = vz , +/au can be eliminated between Eqs. (11) and (12), giving 

( 
du, P1.,-Ps~)~+(P1$pPs~)g-(Pl-P2)(g~~+g~~) = 0. 

Next, continuity of the normal velocity at the interface leads to 

(14~ - u,)(av/aa) - (7~~ - 0,)(aqaa) = 0. (14) 

To apply Eqs. (13) and (14) correctly in our finite-difference framework, consider 
the situation in Fig. 3. A finite displacement ds of the vertex 1 with respect to the 
vertex 2 occurs in the time increment St. Equation (13) can be represented by an 
“explicit” formula 

( 
nt1 

f4 - Ul 
n 

p1 St - Pz 
.i+,; q(g)~ + (pl “;+l; oln _ ps 4+1; qg 

- (PI - PJ [SE ($)I + g, (g):] = 0, (15) 

where (ax/&z); and (aylaa); are evaluated at point 2 (Fig. 3). 1 s 2 
(a) At the n th 

trn>e step 

IntPrface 

(c) At the (nil)“’ time step (after rezoning). 

FIG. 3. Boundary conditions at a fluid-fluid interface. 
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We choose to apply Eq. (14) at the (n + 1)th step, also at point 2. However, the 
counterpart of point 2 in the upper fluid is point 3, rather than point 1 which has 
now moved away from point 2. To a first approximation, we have 

Now Eq. (14) becomes 

UQ = Ul - os(au/as), 
2’3 = Vl - ds(av/as). 

(16) 

[uf” - Lls(au/as)~” - u;“](ay/au);+’ 
- [v:+l - os(av/as):+’ - v;“](ax/au);” = 0. (17) 

Equations (15) and (17) must be satisfied by u;+l, v;“, u:+‘, and v;+l associated 
with a vertex on the fluid-fluid interface. Symbolically, this set of equations may be 
written as 

Au;+’ + Bv;+’ + Cu,n+’ + Dv,n+’ + E = R, , 
A%:+’ + B’v:+’ + C’u;+’ + D’v;+l + E’ = R5, W 

where R, = R5 = 0 if correct values of the velocity components are used. At the 
end of each calculational cycle, the upper fluid region is rezoned in such a way that 
point 1 is moved to the position of point 3 to line up with point 2 in the lower 
fluid (Fig. 3~). 

2.4. Relaxation Techniques 

To solve Eqs. (3), (5), (lo), and (18) simultaneously by an iterative procedure, 
the values of u$,~ and v~,~ from the previous time level are used as a first approxima- 
tion. In general, this set of values do not satisfy the pertinent equations and result 
in nonzero residuals on the right-hand side of each equation, e.g., R, , R, , etc., 
mentioned above. There are many ways in which the vertex velocities (uz$l, v:y) 
can be adjusted to dissipate the residuals. We found that a relaxation procedure, 
evolved from the ALE method, proves to be more efficient than the one used in 
the BW method. 

Referring to Fig. 2, the following formulas for changes in the vertex velocity 
components are used in the present method to reduce the residuals R, and R, . 
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where 

and w is a relaxation factor (1 < w -=c 2). 
When very skewed or elongated cells are present, the relaxation procedure 

employed in the BW method becomes much less efficient because a small value for 
w has to be used uniformly across the mesh to avoid instability. This difficulty is 
avoided by the use of Eqs. (19). Note that the last four of Eqs. (19) imply 
momentum transfer along the diagonals of a cell. Thus, like the BW method, the 
present method rigorously conserves both linear and angular momentums through 
the use of Eqs. (5) and (19). 

The relaxation method for correcting (u:;‘, a:,;‘) at rigid boundaries and free 
surfaces as formulated in the BW method has been found to be quite satisfactory. 
To correct the velocities at a “free-slip” material interface, we multiply each term 
in Eq. (15) by St and denote the right side by RD , the residual in the dynamic 
interface condition. Also, let R, , the residual in the kinematic interface condition, 
be the right-hand side of Eq. (17). The following formulas for adjusting velocities 
of the interface vertices are used to reduce R, and RK . 

&;+I = WY)(--0l Ax &I - (442) &I, 

&$+1 z.z (lh’)(--0l dY RD + @x/2) &I, 

su,“+1 = 
(l/r>@ AX RD + (40) &I, 

(20) 

W+’ = (W(B 4 RD - (42) &I, 

where 
Llx = (ax/au); ) dY = @Y/w,” 7 y = w2 + (4>“, 

O1 = PlP2h2 + P22F1 and B = p22(p12 + p22)-1. 

The maximum allowable values for the residuals depend on the accuracy 
desired, and is therefore problem dependent. But a typical value is 0.0005. It 
usually takes 10 iterations to satisfy this convergence criterion. 

2.5. Rezoning Techniques 

The basic idea behind the rezoning of the finite-difference mesh was discussed in 
Section 2.1. As shown in Fig. 4, suppose that to maintain a reasonable shape for 
the mesh we decide to move the vertex 0 to a new location 0’. The problem is to 
find the velocities (z+,‘, z+,‘) and density pO’ for the new vertex 0’. Let Q represent 
either U, U, or p. Then, using Taylor’s series expansion to the second order in the 
(4 b) plane, 

Qo’ = Qo + WaQlWo + SWQPbh 

+ #k~~(~~Q/&z~), + ~SUSZ@~Q/&ZZJ~), + Sb2(82Q/%2)o]. (21) 
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FIG. 4. Definition sketch for the rezoning procedure. 

To evaluate 6a and 6b, we have the following relations 

(22) 

and a similar expression can be derived for Sb; here 

is the Jacobian of the transformation. The subscript 0 means evaluation at the 
point 0. 

Now, the various derivatives with respect to a and b can be evaluated by suitable 
finite difference to complete the calculation of Q,,‘. The rezoning procedure des- 
cribed here is the “Eulerian” phase of the GALE algorithm. 

2.6. Numerical Stability and Damping of Short-wavelength Modes 

A rigorous stability analysis is difficult to perform on the system of nonlinear 
finite-difference equations employed in the present method; hence, heuristic 
argument and stability criteria for Eulerian methods have been relied upon to 
obtain an approximate upper bound for the time increment St. 

By considering truncation errors in the free surface condition in the light of a 
linearized standing wave solution, Brennen and Whitney [3] arrived at a criterion 
which states that St should be less than the time taken for a gravity wave to travel 
one cell length when free surface and gravity are present. Numerical instability due 
to advection terms does not arise in purely Lagrangian calculations. When the 
rezoning procedure is used, however, a condition similar to the consideration of 
advectional stability in Eulerian methods must be satisfied. This is achieved by 
requiring the rezoning procedure to be an interpolation rather than an extrapola- 
tion, namely the point 0’ (Fig. 4) should remain within the shaded area. 

The growth of “alternating errors” is an instability which GALE shares with its 
predecessors. The situation is illustrated in Fig. 5, where the propagation of a 
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solitary wave in a channel of constant depth (see Section 3.1) is shown. The 
hourglass-shaped distortion of the computing mesh has resulted from the growth 
of short-wave disturbances. To trace the origin of alternating errors, it is 
informative to observe that residuals in the cell equations, viz. R, in Eq. (3) and R2 

in Eq. (5), are completely insensitive to errors in ZP+~ or z~+l that happen to be of 
the same value along cell diagonals. An example is the case in which .;+l and u;+l 
(Fig. 6) contain the same amount of errors. 

FIG. 5. An example of alternating errors. 

FIG. 6. A typical pattern of alternating errors. 

The alternating errors are disturbances with wavelenth equal to two cell spacings 
in the Lagrangian space. Various attempts have been made to “damp out” the 
alternating errors. In the BW method, a fourth-order damping along the free 
surface, i.e., requiring a4u/aa4 GZ 0 and a4v/aa4 w 0, has been used with some 
success. Butler [4], in connection with the LINC method extensions, uses a Hooke’s 
law type force with damping that tends to keep a given interior vertex in the 
center of mass of its eight surrounding neighbors. Since no explicit finite-difference 
formula is given in [4], the following formula is found in [5]. The artificial damping 
force has the following effect. 

(%.~hcIjustecl = %.j + BU(%,l,i + %l,j + *id+1 + %*+I)/41 - U&j), (23) 
and a similar formula for visj . Using a linear stability analysis advanced by 
von Neumann [7], it can be shown that 0 < fi < 1 is required to insure numerical 
stability. The alternating error, as shown in Fig. 6, is completely removed within 
one timestep when /3 = 0.5 is used. 
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Naturally, a damping mechanism such as Eq. (23) will damp Fourier components 
of all wavelengths, with the short wavelength components most drastically affected. 
Thus, it is important not to use too large a value for /3. Experience indicates that 
fl = 0.05 N 0.10 is usually required to remove alternating errors. Unfortunately, 
this can introduce excessive damping of the physically important long-wavelength 
components. 

A more desirable method has been developed, which effectively eliminates the 
alternating errors but gives very little damping to the meaningful part of the 
solution. Consider cell A in Fig. 6, and define a discrepancy parameter 

# = (Ul + 4 - (u2 + u4>, (24) 

which is very sensitive to alternating errors. Now, we wish to add corrections 
6u, , 6~4, , au, , and Su, to u1 , u2 , uQ , and u4 , respectively, such that 

and 

(Su, + Su,) - (Su, + Su,) = -k#, (25) 

su, = 624, ; su, = su, ) (26) 

su, + 62.4, + su, + su, = 0. (27) 

Equation (25) is imposed to reduce the discrepancy between the average velocities 
along two cell diagonals, namely &(u, + u3) and $(u, + u4). Equation (26) insures 
minimum impact to the cell residuals RI and R, , and Eq. (27) is just conservation 
of the average u-momentum in cell A. Solving Eqs. (25)-(27) simultaneously, 

au, = Su, = -k#/4, 

6u, = Su, = k$/4. 
(28) 

At a given timestep, after the iterative solution for un+l and un+l is terminated, the 
vertex velocities are adjusted according to 

(U;+‘)adjusted = ui n+l - (W/4), 

($+‘)adjusted = u2 n+1 + W,W), 

(Utfl)itdjusted = u3 n+l - GWP), 

(UI+‘)adjusted = u4 *+’ + W/4), 

and similar expressions can be derived for the 0’s. For stability, 0 < k < $-. The 
alternating error shown in Fig. 6 is damped out completely when k = $. It has 
been found that k = 0.025 works very well, as explained in what follows. 
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To understand the effects of artificial damping, the generation and propagation 
of a nonlinear solitary wave in a channel of constant depth have been used as a test 
problem. More details on the solitary wave will be given in Section 3.1; we are 
only concerned here with how artificial damping affects the accuracy of the solu- 
tion. As shown in Fig. 7 a solitary wave can be generated by the forward motion of 
a vertical plate. It has been found that, before the wave crest reaches the wall on 
the right-hand side of the channel, alternating errors do not occur even without 
artificial damping. Thus, this early-time solution without damping can be used as 
a reference against which the effects of artificial damping can be evaluated. 

0. 5 

FIG. 7. Definition sketch for a solitary wave. 

Number of Time Steps 

FIG. 8. Effect of artificial damping on the total energy. The solid line is the correct total 
energy. The dash line is k = 0.025, and A, 0, l are k = 0.25, /? = 0.05 and B = 0.5, respectively. 
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In this reference case, the total energy in the wave tank starts from zero and 
reaches a maximumvalue of 0.45 at the end of the plate motion (Fig. 8). Four experi- 
mental calculations have been conducted: in two runs Eq. (23) was used, with /3=0.05 
and 0.5, while in the other two runs Eqs. (29) were used, with k = 0.025 and 0.25. 
Each calculation was continued for 1000 timesteps, which correspond to the time 
required for the solitary wave to travel across the length of channel eight times. 
Recall that both the case /3 = 0.5 in connection with Eq. (23) and the case k = 0.25 
in connection with Eqs. (29) completely eliminate the alternating error pattern 
within one timestep, so these two cases may be compared. In Fig. 8 we see that at 
the end of the calculation one loses about 90 % of the total energy when j3 = 0.5 
is used in Eq. (23). In contrast, when k = 0.25 is used in Eqs. (29), we lose about 
10 % of the total energy. Now, we have found by experience that p = 0.05 and 
k = 0.025, both of which reduce the amplitude of the alternating errors by 10% 
at each timestep, are about the minimum values needed to remove the alternating 
errors. Using k = 0.025 in Eqs. (29), the loss in total energy is only 1.5 % while the 
energy loss is 30 % if /3 = 0.05 is used in Eq. (23). 

III. EXAMPLES 

3.1. Generation of Solitary Waves 

With recent advances in computational methods, it becomes possible to study 
the transient aspects of solitary waves. For example, Chan and Street [8] simulated 
the maximum run-up R/D of a solitary wave on a vertical wall (Fig. 7) and their 
results compared favorably with the experiments of Camfield and Street [9]. In 
their calculations, the initially undisturbed wave profile and the associated velocity 
field were taken from Laitone’s [lo] second-order theory and the subsequent 
development was calculated using the SUMMAC method. Camfield and Street 
employed a piston-plate, the forward displacement of which is a hyperbolic- 
tangent function, to generate solitary waves in their experiments. We have utilized 
the flexibility of the GALE method to simulate their experimental procedure. 

In this example, we nondimensionalize lengths by the still water depth, D, 
gravity by g, velocities by (gD)l’“, and the time by (D/g)li2. Shown in Fig. 9 is a 
time sequence of the configuration of the computational mesh. The vertical plate 
on the left boundary moves to the right in early times. A well-developed solitary 
wave appears at about t = 15; the wave height for this particular calculation is 
H,, = 0.625. It then runs up a vertical wall on the right. Note that at t = 22 the 
free surface approaches a sharp angle at the wall. Subsequently the wave is reflected 
and travels to the left. We have run three cases, Ho/D = 0.214, 0.465, and 0.625, 
and obtained the maximum run-ups RID = 0.446, 1.085, and 1.733, respectively. 
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These results are in excellent agreement with the experiments of Camfield and 
Street and with the numerical solution of Chan and Street. 

t = 24 

FIG. 9. Generation and reflection of a solitary wave. 

Figure 10 shows the growth of rotation at the lower left of the channel when the 
ALE method is employed, which, as mentioned earlier, does not conserve angular 
momentum. 

FIG. 10. Growth of velocity circulation when Rz is not controlled. 

3.2. Kelvin-Helmholtz Instability 

The Kelvin-Helmholtz instability of an interface separating two fluids of different 
densities in a gravity field has been chosen to validate a two-fluid code based on 
the present method. The problem is formulated as shown in Fig. 11. Here, all 
lengths are nondimensionalized by the half wavelength X/2 of the interface, veloci- 
ties by ( gh/2)lj2, gravity by g, and densities by the density of the lower fluid pz . 

At t = 0, when the wave amplitude a, = 0.01, the well-known linear solution is 
used as initial conditions; the subsequent development of the flow field is calculated 
by the GALE method. To save computer time, periodic boundary conditions 
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FIG. 1 I. Definition sketch for the Kelvin-Helmholtz instability problem. 

FIG. 12. Kelvin-Helmholtz instability. 

have been utilized so that a region of only one wavelength in the x-direction needs 
to be computed. Figure 12a shows a portion of the computing mesh at t = 0.20; 
the entire mesh contains 20 x 20 cells in each fluid region, but only six rows above 
the interface and three rows below it are shown here. At t = 0.26, the wave crest 
forms an angle very close to 120” and the wave height-to-length ratio becomes 0.11. 
At this point the lower fluid particles start to bunch up at the crest which becomes 
unstable. Finally, at t = 0.278, the calculation went unstable with the height-to- 
length ratio equal to 0.147. Since analytic solutions for the density ratio p1/p2 = 0.1 
up to the breaking of the waves are not available, it is attempted here to make some 
qualitative comparisons with classical solutions for the case p1/p2 = 0. Stokes 
found that when the limiting steepness of progressive waves is reached, the crest 
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angle is equal to 120”, while Michell and Keulegan found the height-to-length 
ratio to be 0.143 for progressive waves of maximum height [I 11. Thus, the present 
calculation yields results in good agreement with existing theories, 

3.3. Internal-Surface Wave Interactions 

The GALE method can be easily applied to the interaction of l-dimensional 
monochromatic internal waves and surface waves propagating in the same direction 
(Fig. 13). In the test problem there are four surface waves corresponding to each 
internal wavelength. The initial group velocity of the surface waves is (C,), = 0.1410 
and the phase velocity of the internal waves is C = 0.1424. Thus, a near-resonance 
condition, i.e., C/(C,), m 1.0, is simulated. Under this condition, it is possible for 
the surface waves to extract energy from the internal waves such that amplitude 
and frequency modulations occur on the surface waves. 

-I xs=o.5 I- Surface waves 

v1 
p1 = 0.1427 hl =o. so 

I 
I I 

I-.-.- 
- h -0.10 

/ ; 

FIG. 13. Definition sketch for the surface-internal wave interaction problem. 
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FIG. 14. Surface wave profile at I = 49.0. 
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To avoid calculating the transients which exist naturally in an experimental 
configuration, periodic boundary conditions are applied to the left and right 
boundaries of the fluid domain. At t = 0, since the wave amplitudes are small, the 
superposed linear solutions for the surface and internal waves may be used as 
initial conditions. Thereafter, the calculation is taken over by the nonlinear, full 
dynamic equations embodied in the GALE method. In this example, all lengths 
are nondimensionalized by d, the mean distance of the free surface from the bottom 
of the channel, while all velocities and the time are nondimensionalized by ( gd)li2 
(g is gravity) and by (d/g) li2, respectively. The amplitude of the surface waves at 
t = 49 is shown in Fig. 14. About 20 % modulation of the amplitude can be seen; 
this agrees fairly well with Ko’s theory [12]. 

3.4. Plane Poiseuille Flow 

To validate the generalized cell equation, Eq. (9), the transient development of 
a 2-dimensional Poiseuille flow has been calculated. The flow in the channel is 
assumed to have a uniform velocity profile initially. Then the action of viscosity 
and no-slip boundary conditions start to modify the velocity distribution until it 
becomes very close to the parabolic steady-state profile. Figure 15 shows the time 
history of the velocity profile. Periodic boundary conditions and rezoning have been 
used in this calculation. 

y,‘b 

FIG. 15. Velocity profiles of a Zdimensional Poiseuille flow. The dash line is t = 0, and 
A, o, - are i = 5, 25 and 50, respectively. 
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IV. CONCLUSIONS 

The various test problems calculated so far indicate the advantages of using the 
Lagrangian description of fluid motion whenever interfaces and/or complex 
boundary geometries are present. To successfully perform Lagrangian calculations, 
however, it is essential to suppress the alternating errors, with as little distortion on 
the important parts of the solution as possible, and to use a stable relaxation scheme 
in solving the velocity field. Furthermore, for highly strained flows, proper rezoning 
of the computational mesh is required to avoid singular mapping between the 
physical space and the Lagrangian space. The present GALE method has been 
addressed to these considerations and represents an improvement over its predeces- 
sors. 

Extension of the GALE method to cylindrical coordinates for flows with axial 
symmetry is straightforward, but generalization to three dimensions requires 
more complicated considerations. Nevertheless, the flexibility of the present 
technique offers a very useful tool for studying many interesting problems. 

Based on the sample problem discussed in Section 3.1, it is found that, using the 
CDC 7600 System, the computation time required for the application of the GALE 
method is only about 5 % more than that required in the ALE method. 

APPENDIX: METHOD OF CALCULATING ( AND 7 

In most applications, the stresses 7Z1:, -rZy, and ryy are related to the rate of 
deformation of the fluid element, e.g., 

~c.3, = 2h(&@x), 

7 93 = TYX - - WWY) + @4w>, (A.11 

TYY = 2h(avpy), 

where h is taken as the dynamic viscosity t.~ for laminar flows or it may be set equal 
to p E, E being the eddy viscosity computed from a turbulence model, for turbulent 
flows. Thus, the problem of computing the stress components reduces to that of 
evaluating the various velocity derivatives. 

Regarding au/ax and au/+ as functions of (a, b), then a formal coordinate 
transformation results in 

)i( ;;z ax ay 
-----, ab aa 1 

$a,b) = - ($g-$g 
I/( 

iz$ ax ay -----. 
ab aa > 

GW 
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By substituting v for u in Eqs. (A.2), we obtain similar expressions for &~/ax and 
&I/+. The remaining task is to evaluate the first-order derivatives au/&z, au/&, 
au/&, &lab, ax/as, axjab, ay/aa and ayjab in the Lagrangian (a, b) plane, which is 
straightforward in finite differences. To calculate 5 and q according to Eqs. (7), we 
can again use Eqs. (A.2) by replacing u with T*~ , rz2/ , etc. 
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